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Circuit-Switched “Network Capacity” under QoS
Constraints

Jeffrey E. Wieselthier, Gam D. Nguyen, and Anthony Ephremides

Abstract: Usually the network-throughput maximization problem
for constant-bit-rate (CBR) circuit-switched traffic is posed for a
fixed offered load profile. Then choices of routes and of admission
control policies are sought to achieve maximum throughput (usu-
ally under QoS constraints). However, similarly to the notion of
channel “capacity,” it is also of interest to determine the “network
capacity;” i.e., for a given network we would like to know the maxi-
mum throughput it can deliver (again subject to specified QoS con-
straints) if the appropriate traffic load is supplied. Thus, in addi-
tion to determining routes and admission controls, we would like to
specify the vector of offered loads between each source/destination
pair that “achieves capacity.”

Since the combined problem of choosing all three parameters
(i.e., offered load, admission control, and routing) is too complex
to address, we consider here only the optimal determination of of-
fered load for given routing and admission control policies. We
provide an off-line algorithm, which is based on Lagrangian tech-
niques that perform robustly in this rigorously formulated nonlin-
ear optimization problem with nonlinear constraints. We demon-
strate that significant improvement is obtained, as compared with
simple uniform loading schemes, and that fairness mechanisms can
be incorporated with little loss in overall throughput.

Index Terms. Communication network, performance evalua-
tion, optimization, throughput, circuit-switched, quality of service

(QoS).

I. INTRODUCTION

A comprehensive approach to network optimization and con-
trol would address jointly the highly interdependent issues of
admission control, routing, offered load, and (for wireless net-
works) channel access. However, each of these individual prob-
lems is extremely complex, making a complete solution of the
joint problem unattainable. Therefore, it is necessary to simplify
the problem by addressing these issues separately in a manner
that will, hopefully, lead to useful insights for their joint solu-
tion.

In this paper, we consider circuit-switched (i.e., session- or
connection-oriented) networks, for which the primary perfor-
mance criteria are throughput and blocking probability. Our fo-
cus is on the off-line determination of the offered load profile
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that provides optimal performance (i.e., maximum throughput)
for the case in which both the routing and admission-control
policy are fixed; traffic is generated by Constant Bit Rate (CBR)
sources where session arrivals are characterized by Poisson pro-
cesses. We consider a sufficiently general model that includes
classes of both “wired” and “wireless’ networks. A fixed quan-
tity of network resources (i.e., link bandwidth in wired networks
and transceivers in wireless networks) is alocated to a session
throughout its duration.

The problem we address here entails determining the load
vector that results in the highest possible value of overall net-
work throughput, subject to a quality-of-service (QoS) con-
straint on session blocking probability and a fixed set of routes
for each source-destination node pair. This load vector consists
of the offered loads to each of several pre-established circuits.
At the optimal point, the loads may vary greatly on the differ-
ent circuits, and we show that such a nonuniform loading may
provide considerably increased throughput, as compared to the
case of uniform loading. The mathematical formulation is that
of a constrained optimization problem with a nonlinear objec-
tive function and multiple nonlinear constraint functions. This
problem is of interest for “sizing” the network capability, and
thereby determining a benchmark level of “network capacity.” *
Thisis an important quantity because, in practice, it isgenerally
difficult to estimate the traffic loads that a network can support
or the resulting throughput. Once the network capacity is deter-
mined, it is straightforward to determine whether any particular
(typically user-specified) offered load profile achieves alevel of
throughput that is sufficiently close to this benchmark capacity.
If it is not, then pricing mechanisms can be introduced to steer
the offered load profilein adirection that maximizesoverall rev-
enue.

We present an iterative algorithm for the optimization of of-
fered load, subject to QoS constraints. Our approach is based on
the use of Lagrangian optimization techniques, which have been
enhanced by means of heuristics that improvethe reliability and
quality of convergence. Preliminary versions of this approach
can be found in [1]-{4]. Two versions of the QoS constraint are
considered. Inthefirst, we requirethat blocking probability sat-
isfy this constraint on all circuits; in the second, we require only
that the average blocking probability in the network satisfy this
constraint. We demonstrate that when the constraint is relaxed
to its average form, convergence is considerably faster and the
true optimal solution is reached more rapidly and reliably than
in examplesin which each circuit must satisfy the constraint.

I The notion of network capacity referred to here has nothing to do with Shan-
non channel capacity concepts.
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We have observed that a wide range of load profiles can typi-
cally provide nearly optimal performance; thus, acceptable per-
formance can generally be obtained even when the offered loads
are not optimal. Additionally, we address the fairness consider-
ations associated with guaranteeing load levelsto particular ser-
vices, and we show that such service guarantees often result in
only modest reductionsin overall throughput.

The primary contributions of this paper are the novel formu-
lation of the network “sizing” problem for session-based traffic,
which has not previously been addressed in the literature, and
the development of a heuristic that facilitates its solution. We
show the degree of improvement that can be achieved, as com-
pared to uniform offered |oads, and we develop insight into sev-
eral aspects of network operation including: the dependence of
performance on offered loads, the interaction among traffic on
different multihop circuits, and the differing impacts of block-
ing probability constraints that apply to each individual circuit
versus the use of a single constraint on average blocking proba-
bility.

Our algorithm can serve as the basis for a design tool for net-
work optimization. We demonstrate its robustness over a wide
variety of network and algorithm parameters, and show that an
easily applied stopping rule can be implemented, thereby pro-
viding reliable convergence to nearly optimal solutions. Al-
though all of our examples represent the case of wireless net-
works, our formulation is also applicable to wired networks.

In Section |1, we present our basic network model and define
the optimization problem. In Section I11, we discuss the pro-
jection heuristic that we have developed for this problem. In
Section |V, we present the results of numeroustest cases, which
verify the robustness and effectiveness of the projection heuris-
tic. In Section V, we quantify the improvement achieved by our
approach, as compared to the case of uniform offered loads.
In Section VI, we demonstrate the effect of admission-control
thresholds on network performance. In Section VII, we define
the concept of “ underloaded circuits,” and illustrate their impact
on network performance; additionally, we address fairness is-
sues. Thus far in the paper, all discussion addressed the casein
which the constraint on blocking probability must be satisfied on
each circuit. In Section VIII, we introduce an aternative form
of the constraint in which only the average blocking probability
(over all sessionsand all circuits) must satisfy such a constraint.
We show that overall performanceisimproved and that conver-
gence is much faster; the projection heuristic is not needed in
this case because only a single constraint on blocking probabil -
ity needs to be satisfied. Finally, in Section X, we present our
conclusions from this research.

I1. THE NETWORK MODEL AND OPTIMIZATION
PROBLEM

We consider a network with fixed topology and fixed routes
between each pair of source and destination nodes throughout
the duration of each accepted session (e.g., voice call). Network
topology can be described in terms of the communication re-
sources available at each node and the connectivities between
nodes. We assume a “blocked calls cleared” mode of operation,
i.e., unless sessions are accepted for immediate transmission,
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they are “blocked” and lost from the system. Appropriate per-
formance measures for this mode of operation include blocking
probability and throughput.

Our objective is to maximize network throughput, subject
to constraints on blocking probability. Since the routes and
admission-control policy are fixed a priori, we achieve our ob-
jective by choosing the offered loads on each of circuits. This
isauseful problem because it permits us to determine the max-
imum throughput that can be achieved, subject to constraints on
blocking probability, when routing and admission-control pol-
icy are fixed. The optimization problem is defined in Section
I1-A. First, we describe the network model.

We consider J source-destination pairs, each of which is as-
signed a fixed route (circuit) through the graph of the network
that interconnectsthem. That is, we do not consider the problem
of optimally choosing these routes, although we fully recognize
the impact of this choice on throughput. We let z ; denote the
number of sessionsthat are ongoing on circuit 5, and we assume
that each accepted session consumes a fixed amount of resource
throughoutitsduration, i.e., afixed unit of bandwidthisrequired
over each link in the circuit to support each session. Thus (using
the terminology associated with broadband networks), we con-
sider the case of CBR traffic sources. The state of the system is
the J-dimensional vector x = (z1,---,z).

Our model can accommodate either wired or wireless net-
works. The capacity of network element (link or node) i is de-
noted by T,. In the wired case, T'; is the number of channels
supported by link 7,5 = 1,---, M, where M is the number of
links in the network. In the wireless case, T; is the number of
transceiversat node i, and M isthe number of nodesin the net-
work. Our wireless network model corresponds to the case of
“ad hoc” (or, equivalently, “flat” or “infrastructureless,” rather
than cellular) networks. We assume that each node has sev-
eral transceivers, and that each session requires the use of one
transceiver at every nodein itsroute; FDMA can then be conve-
niently assumed for channel access, provided that there is suffi-
cient bandwidth for all transceiversto operate simultaneously at

non-interfering frequencies. The state variables 1, z2, -+ , 2
satisfy sets of linear constraints of the form.
< T = ...

D STy i=e M, (1)

where I; isthe set of circuits that share network element i.

We assume Poisson arrival statistics, and denote the offered
load vector as A = (A1, A2, -+, Ay), where ); is the arrival
rate to circuit j. The expected call duration on circuit j is1/u;,
and the corresponding load on circuit j isp; = \;/p;. Admis-
sion control is implemented on a source-destination basis (i.e.,
not simply at the link level). We assume the use of “threshold-
based” admission-control policies [5], in which calls are ac-
ceptedaslongasz; < X, (wherethe X ;s are the admission-
control parameters), and provided, of course, that at least one
transceiver is available (i.e., not currently being used by another
session) at each node along the route. Such threshold-based
policies are a subset of the class of coordinate-convex policies
[6]. Under the assumptions of Poisson arrivals and coordinate-
convex admission-control policies (and for any distribution of
call duration), the distribution of the system state has the prod-
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uct form (see e.g., [7]). The admission-control policy is defined
by the specification of the admissible state space (2, which in
our problem corresponds to specifying the X ; threshold values.
The resulting stationary state distribution is then:

J zj
p .
o (x) =m0 (0) [[ T @)
j=1 "7
where mq(0) is the normalization constant given by
-1
J p?]‘
m(0) =4 > [T 5 (3)
xeQ j=1 77"

For any state space 2, it is straightforward (although time con-
suming) to evaluate 7 (0), which in turn permits the evaluation
of performance measures such as throughput and blocking prob-
ability.

The use of threshold-based policies for this problem is rea-
sonable, not only because of their simple implementation and
their mathematical tractability by means of the product form?,
but also because they provide nearly optimal solutions [5]. In
this paper we fix the admission-control policy 2 and maximize
the throughput over al input rates that do not violate the QoS
constraints.

A. The Optimization Problem

Our god is to find the offered load vector A\ that maximizes
the total network throughput S = S(\) for a fixed threshold-
based admission-control policy, subject to a circuit blocking
probability P;(\) < Q; = QoS constraint for circuit j3. Note
that such a vector A is an extremal point of the Erlang capac-
ity region for the network [8]. The equilibrium state distribu-
tion, and therefore throughput and blocking probability as well,
are determined by means of the product-form solution discussed
above.

Thetotal network throughput S is the sum of the throughputs
on each of the J circuits, i.e.,

(4)

where
Si(A) =X (1 = P;(X) (5)

is the throughput of circuit j, and P ;(\) is the probability that
an incoming call to circuit j is blocked. The circuit blocking
probabilities P (), and hence the throughput S(\) as well, are
obtained by means of the product-form solution associated with
the particular network (i.e., the topology, number of transceivers
at the nodes, and choice of circuits), the admission-control pol-
icy, and the offered load vector .

Theintroduction of constraintsof theform P ;(\) < @; com-
plicates the solution process considerably. To facilitate the dis-
cussion, we introduce the following definitions.

2|f the product-form solution did not apply, it would have been necessary to
solve the balance equations to determine the equilibrium distribution.

31n Section VIII, we consider the use of an alternative QoS constraint, under
which the average circuit blocking probability (weighted by the offered load to
each circuit) must not exceed a specified value.
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Definitions:

e An offered load vector ) is admissible if the constraints
on blocking probability are satisfied.

e The admissible region contains all offered load vectors
that are admissible.

e Corresponding to each admissible vector X is a value of
admissible throughput.

Constrained Optimization Problem:
Our goal is to choose the offered load vector A to maximize
the admissible throughput. This problem can be formulated as

max x{S(M)}, (6)

subject to: Pj;(A\) < @Qj. (7

The mathematical formulation is that of a constrained opti-
mization problem with nonlinear objective and constraint func-
tions of the variable A. Thisis, in general, a difficult problem,
for which the available mathematical theory provides the basic
principles for solution, but no guarantee of convergence to the
optimal point [9]. In this paper we choose to use the augmented
Lagrangian approach as the method of solution, and we demon-
strate its effectiveness and robustness when tested in awide va-
riety of network examples. From the theoretical point of view,
this result constitutes already a contribution to nonlinear opti-
mization theory. However, the focus of our paper is rather the
application of this method to network design.

We first convert the constrained optimization problem to an
unconstrained one by creating a new objective function that in-
creases with S(\), but is decreased (penalized) when the QoS
congtraint is violated. For this new objective function, we use
the augmented L agrangian function

L(\y) =

SO~ 3 himax{0, 2, — Qi) + & (max{0, P, — Q1))
®

where S(A) is a function of the circuit blocking probabilities
(see (@) and (5)),d > 0and v = (y1,72,---,7s) isthe La
grange multiplier vector. Our goal isto maximize L(s) over \.
To do this, we use the iterative algorithm defined by

Aj(k+1) :max{Amin,Aj(k) +68—L}, 9
0\
(forj=1,---,J;k=1,-- , kmqe) Wherethe stepsize param-
eter § and the Lagrange multipliers are updated using standard
techniques (see [1], [9]).* The partial derivatives used in the
update (9) are

oL 95 < oP;
oN TN 20N [vi +d(P; — Q)1 1(P; > Q;), (10)

41n most of our examples, we have set i, = 0. If fairnessis also an issue,
anon-zero value of \.,;,, can be used to guarantee a specified throughput level
on each circuit. Doing so typically resultsin only modest decrease in throughput
for moderate values of \,..;» , asis demonstrated in Section VII.
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where
oS

J9S;
oNi Zy‘:l N

Thus the search proceeds along the direction of the through-
put gradient V.S when the QoS constraints are not violated, and
in a direction influenced by both the throughput and blocking
probability gradients when the constraints are viol ated.

The product-form solutionis used to cal culate the equilibrium
state occupancy distribution, from which we can obtain the cir-
cuit blocking probabilities P;(A), the circuit throughput values
Si(A), and thepartial derivativesOP ;(\)/OA; and 0S () /OA;.
In [10], Jordan and Varaiya have shown that

(11)

OP;(\) | X% eov(zi, z)), 77 na
ToN | & (B{wi} —var(zy), i=j - (12)
0S;(\ j
aj)\(» ) — *)‘\—jcov(xi,il?j)'

We refer to the straightforward application of the updating rule
defined by (9) and (10) as the “ basic search technique.”

B. Complexity and Computation Time

The complexity of our algorithm is dominated by the compu-
tation of the normalization constant = (0), givenin (3). This
computation requires the summation of quantities that are de-
fined over the entire state space 2; thus, the size of 2 dominates
the complexity of our algorithm. The number of statesin Q in-
creases rapidly as the following increase: the number of circuits
J, the number of transceivers T'; at each node, and the thresh-
old values X ; imposed on each circuit. Additionally, the set
of circuit paths determines which circuits pass through any spe-
cific node, and thus which circuits must share the finite number
of transceivers at that node, as expressed by the constraint of
(2); asthe number of circuits sharing a node increases, the state
space becomes more constrained and the size of () tends to de-
crease. Thus, the overall run time depends on many factors, and
varies drastically from network to network. For example, when
run on a 100 MHz workstation with 7; = 6 and X; = 4, we
have observed run times per iteration of the order of secondsfor
Network 3 (for which J = 8), and minutes for Network 2 (for
which J = 10); these networks are shown in Fig. 4. Clearly,
these calcul ations are computationally intensive (although com-
putation time could be reduced significantly by using a faster
machine or perhaps through an improved software implementa-
tion). Nevertheless, since our algorithm is intended for off-line
execution, computational efficiency isnot of crucial importance.

111. DEVELOPMENT OF THE “PROJECTION
HEURISTIC”

We have tested numerous versions of our algorithm on ava-
riety of networks, including the example of “Network 1" shown
inFig. 1. Inthis example, the network supports.J = 10 circuits,
whose paths are listed in the caption. The speed of convergence
obtained by using the basic search technique of (9) and (10) was
typically slow, and strongly dependent on the parameter values
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Fig. 1. “Network 1,” a 24-node, 10-circuit network example.

C1 = (4,5,13, 20, 24); Ca = (7, 14, 15, 17); C3 = (9, 12, 13, 19, 14, 15, 16);
C4=(L4,5,13,19); Cs = (5, 6, 11); Cs = (21, 22, 20, 13,5, 6); C7 = (1, 2, 3,
6,8,9,10); Cs = (3,4, 7, 14, 15, 18); Co = (2, 4,7, 12); C10 = (14, 7, 11, 8).

used in the search. The most interesting, and troublesome, be-
havior occurred when the search trajectory passed near the QoS
constraint contour. A typical example for the basic search tech-
nique, is shown in Fig. 2(a). In this figure a two-dimensional
representation of the trajectory is shown, in which the values of
the (A1, A3) pair are plotted asthe search proceedsfromitsinitial
point to the final solution. All ten offered load values actually
vary throughout the search; however, the contours of constant
throughput S(\) and P ._ .. (i.€, the largest blocking proba-
bility among the J circuits) shown in the figure are based on the
values of Ay and Ay — Ay at the end of the search. Fig. 2(b)
represents the use of the of the guided search technique, which
isdiscussed in Section I11-A.

The search trgjectory shown in Fig. 2(a) is typical of results
obtained using the basic search technique in that significant (al-
though non-monotonic) progress is made in the early stage of
the search, whereas considerably less-productive oscillatory be-
havior is observed as the search progresses. A common diffi-
culty in constrained optimization problems arises because the
optimum lies on the search boundary (i.e., one or more the cir-
cuit blocking probabilities is at the maximum-permitted QoS
value). In such cases, typica gradient search techniques rely
on damping of the stepsize 6 to cause the search to dow and
home in on the optimum. However, an overly rapid decrease
in 8 resultsin failure to reach the optimal solution; a less rapid
decrease in 6 can result in unacceptably slow convergence.

A. Guided Search Techniques

We have attempted to mitigate the oscillatory behavior of the
basic search technique by using our knowledge of the through-
put and blocking probability gradientsto guide the search more
efficiently. Ideally we would like the search to proceed along
a direction of increasing throughput so that, at the same time,
the blocking probabilities of circuits that are close to the QoS
constraint do not increase. The basic approach to guiding the
search was illustrated in [1], [2] by assuming that the blocking
probability of asingle circuit (circuit ) is close to the QoS con-
straint value. A heuristic was devel oped, based on a projection
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53 54 5!5 /ﬁfﬁ’ l5.7 58 59 6 6.1

M

(a) Basic search

operation in which the search is guided by removing the compo-
nent of VS that is parallel to V P., the gradient of the blocking
probability of circuit c. Fig. 2(b) shows atypical example of the
trgjectory of the guided search. Note that there is considerably
less oscillation, and that a higher value of throughput is reached
(the QoS constraint boundary now includes points that have an
admissible throughput that exceeds S(\) = 17).

The original version of the heuristic did not take into consid-
eration the fact that, at atypical point in the search, itiscommon
for several circuits to violate the QoS constraint or to be suffi-
ciently close to the QoS boundary that the QoS constraint isin
danger of being violated. We have observed behavior in which
the chosen circuit for the projection alternates among two or
three of the circuits, resulting in oscillatory behavior in which
little progress is made toward the optimal solution. To mitigate
this behavior, we have considered a generalized form of the pro-
jection operation in which several circuits are included in the
projection, thereby taking into consideration the fact that sev-
eral circuits are in danger of violating the QoS constraints, and
should be discouraged from doing so.

B. The Generalized Projection Operation

To incorporate the QoS constraints associated with some or
all of the circuits into the search-guiding mechanism, we intro-
ducethe quantity Ps;, whichisafunction of the circuit-blocking
probabilities Py, P, - - - , P;. Inthisstudy we have used the fol-
lowing simple, linear form for Ps::

Po= o3 P (13)
where ) isasubsetof 1,2, -, J, and Ny, isthe number of cir-
cuitsincluded in X. Thus Ps is the average blocking probabil-
ity of the circuitsincluded in X. The objective of the projection
operationisthentoincrease S, whilenotincreasing Ps,. Thede-
sirable component of VS isavector D = (Dy,D»,---,Dy),

_\777;7 | | | | |
53 54 55 56 57 58 59
M

(b) Guided search

Fig. 2. Trajectory in A\; and A3 superimposed on throughput and P._ 4, cOntours; A2, As—A1¢ are fixed at their final values.

VS

VP
Fig. 3. D = component of V.S that is orthogonal to V Ps..

which is obtained by projecting V.S on the plane that is orthog-
ond to V Py, asillustrated in Fig. 3, and is mathematically given

by:

VS — Yopta VPy

IMEIR
D= if [VS - e Ve > 7lIVsll; - (14)
VS  otherwise,

(10) is modified by replacing 0S/0A; by D;. Therefore, A is
updated in a direction that tends to increase throughput without
increasing the average blocking probability of the circuitsin X.
For further geometrical interpretation and the rationale behind
of the projection formulation, see[1], [2].

The reason for using the projection operation only when it
providesasufficiently large value of ||D|| is based on our exper-
imental observation that (in some cases) the trgjectory can reach
a point at which ||D|| is quite small. This behavior results in
dow progress toward the optimal point, or even virtually total
stopping of the trajectory, resulting in premature convergence;
in fact, the trgjectory can converge to a point interior to the ad-
missible region (thus none of the circuit blocking probabilities
are at the specified value, a condition not characteristic of the
optimal point). This behavior is especially prevalent when the
set ¥ is large (e.g., we have considered cases in which X con-
tains al J circuits). It occurs when the gradients of S and Ps,
arenearly parallel to each other. Turning off the projection oper-
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a) Network 2
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Cs

b) Network 3

Fig. 4. Networks 2 and 3.
Network 2: C1 = (3, 2, 1, 15, 19, 23); C» = (1, 14, 13, 12, 10); Cs = (2, 4, 5, 13, 24, 20, 18, 16); Cy = (6, 5, 14, 15); Cs = (3,7, 5); Cs = (3,7, 12, 11, 8); C7 = (6,

7,13, 20); Cs = (8, 9, 10, 23); Cs = (16, 17, 21, 22, 23); C10 = (3, 6, 8)

Network 3: C; = (1, 3, 4, 8, 13, 14, 19); C» = (3,5, 7, 10, 11, 16, 18); Cs = (2, 5, 6, 8, 12, 15, 20); C4 = (1, 4, 6, 14, 17, 19, 20); Cs = (10, 14, 15, 18, 20); Cs =
(2,4,9,11, 12, 13, 15, 16, 19); C7 = (3,7, 8,9, 16, 17, 18); Cs = (1, 5, 7, 10, 11, 12, 13)

ation (typically for just asingle iteration) permits the trgjectory
to escape from such undesirable points. We have found that a
value of 7 = 0.1 works well.

In this paper we consider a version of the projection rule, in
which ¥ is defined as follows:

E:{i:PiZPmin+V(Pmaw_Pmin)}a (15)

where P,,,;,, = min{P;,i =1,2,--- ,J}, Ppo. = max{P;,i =
1,2,---,J},and v € [0, 1]. The parameter v can be chosen to
include either few or many circuits, as desired. For example,
for the networks discussed in this paper, the choice of v = 0.2
causes, on the average, about 8 (out of 10) circuits to be in-
cludedin X (thus X isalarge set). We also provide some results
for the casein which only the*dominant circuit” (i.e., the circuit
with the largest blocking probability) is included in the projec-
tion. Alternative versions of the projection rule are considered
in[11].

We have observed that the use of alarge set X tends to keep
the trgjectory well inside the admissible region during the early
phase of the search, and discourages the trajectory from stray-
ing too far into the inadmissible region once the QoS-constraint
boundary has been crossed.® However, although the neighbor-
hood of the optimal point is reached rapidly, it is common for
thetrajectory to proceed past it, eventually convergingto a point
relatively far from the optimal. Apparently, the distortion intro-
duced by the use the use of D rather than V S resultsin failure
to convergeto the true optimal point.

Based on these observations, which have been supported by
extensive numerical results, we have concluded that it is often

5 Although our original intent was to apply the projection operation only when
the trajectory is close to the QoS-constraint boundary [1]-{3], we have found
that it is often beneficial to apply it throughout the early stages of the search.

best to use a large set X during the early phase of the search,
and then to turn off the projection term (i.e, set ¥ = {), the
empty set) at some point during the search. When the projection
is turned off, the final approach to the optimal solution can be
made without the presence of distortion.

C. Other Algorithmic Considerations

The choice of stepsize (§) damping ruleis also critical to the
performance of the algorithm, as it is in most iterative algo-
rithms. The parameter § must be large enough at the beginning
of the search to make significant progress toward the region of
the optimal solution. Typically, we have chosen the initial step-
size 6, on the basis of a short pilot run (that does not use the
projection) so that, starting at A; = 0, the trajectory exits the
admissible region for the first time after about five to ten itera-
tions. Equally important is the rate of decrease of §. Too fast a
decrease can cause premature convergence of the algorithm, and
hence failure to reach the optimal solution, whereas too slow a
decrease can prevent convergence within the desired time con-
straints.

Care must also be taken in the choice of several other param-
eters used in the algorithm, in particular d, which weights the
penalty termin (8). Theuseof d = 50 worked well for high val-
ues of QoS (e.g., > 0.2), but not for more realistic values. The
relatively poor performancefor low values of QoS was observed
because the gradient terms 0P;/0\; were too small to drive
the trajectory back into the admissible region at the low offered
loads that are characteristic of low values of QoS. This problem
has been mitigated by weighting the constraint-violation terms
by @; 7% asfollows
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Table 1. Offered load table for networks 1, 2, and 3 with T; = 6, X; = 4; Q; = 0.001, and 0.3.
by 2 X3 1 X5 X6 7 s o 210 S
Py Py Py Py Ps Ps Py Py Py Pyg

Network 1;
Q; = | 0.2512 | 0.3230 | 0.3075 | 0.2321 | 0.3395 | 0.1603 | 0.3941 | 0.0229 | 0.3379 | 0.2987 | 2.6646
0.001 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9910 | 1.0000 | 0.9270 | 1.0000 | 1.0000
Q; = | 33160 | 35230 | 1.9599 | 0.0009 | 2.0194 | 0.0008 | 3.3179 | 0.0005 | 1.9675 | 0.0036

0.3 | 09997 | 0.9999 | 0.8975 | 0.8862 | 0.7656 | 0.9999 | 1.0000 | 1.0000 | 0.9011 | 0.7542 | 11.5380
Network 2;

;= | 0.2326 | 0.3724 | 0.3129 | 0.3571 | 0.2460 | 0.2819 | 0.2941 | 0.3546 | 0.3856 | 0.2357 | 3.0700
0.001 | 1.0000 | 1.0000 | 0.9990 | 0.9990 | 1.0000 | 1.0000 | 0.9990 | 0.9990 | 1.0000 | 1.0000
Q; = | 00002 | 32507 | 1.1397 | 2.0615 | 2.3653 | 1.3159 | 1.2968 | 25453 | 34367 | 1.7296 | 13.4129

0.3 | 09999 | 0.9999 | 0.9999 | 1.0000 | 0.9819 | 1.0000 | 0.9999 | 0.9999 | 0.9999 | 0.9989
Network 3;
Q; = | 0.2481 | 0.2529 | 0.2852 | 0.3242 | 0.2808 | 0.2777 | 0.3122 | 0.2646 2.2436
0.001 | 0.9990 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000
Q; = | 11174 | 1.2697 | 1.5078 | 2.2527 | 1.6666 | 1.7254 | 2.1911 | 1.7158 9.4128

0.3 | 1.0000 | 0.9998 | 0.9999 | 1.0000 | 0.9999 | 1.0000 | 1.0000 | 0.9999

upper entries: \;
lower entries: Pj (normalized blocking probability)
its robustness and effectiveness.

; In the uniform parameter sets used in the core runs, al nodes
oL _ 5 _ N 98 | td(B — Q) 1P > Q) have the same number of transceivers (T, = - -- = Tw), all cir-
A\ ’ — O\ /Q; J I cuits have the same threshold (X; = --- = X ;) on the permit-

= (16) ted number of calls and all circuits must satisfy the same QoS

where « is a “kick-up” factor that can be updated (increased
fromaninitial value of 1) as necessary: e.g., o can be increased
if too many consecutiveinadmissible solutionsare observed. We
refer to (16) asthe “projection algorithm.” In the “ no-projection
algorithm” weusedS/90\; instead of D;; thus, itissimilar tothe
basic search, but it incorporates the coefficientsa and @ ;~%°.

IV. THROUGHPUT OPTIMIZATION EXAMPLES:
UNIFORM QOS REQUIREMENTS

To validate our algorithm, and in particular to verify the ro-
bustness and effectiveness of our heuristics, we have chosen to
run numeroustest cases. It is assumed that the durations of calls
on all circuits have the same mean; without further loss of gen-
erdity, weset p; = 1 (1 < j < J). We have performed
extensive testing of our algorithm on three networks, namely
Network 1 of Fig. 1 and Networks 2 and 3 shownin Fig. 4. Net-
work 2, like Network 1, supportsten circuits, whereas Network
3 supports eight. Our basic test consisted of the “core” runs,
in which the 18 versions of the algorithm (which differ in their
particular stepsize rules and projection rules, but which all have
the same length of 1000 iterations—see[11] for full descriptions)
were tested for these three networks and a variety of parameter
values. The coreruns are characterized by “uniform” parameter
sets, as defined below. Results are presented in this paper for a
blocking-probability constraint of QoS = 0.001; results for QoS
= 0.3 are provided in [11], thus illustrating the effectiveness of
our algorithm over a wide range of values of this parameter. In
the core runs, all 18 versions of the algorithm provided nearly
identical throughput, although there were significant differences
in the speed of convergence. The results presented in this pa-
per demonstrate the robustness of our algorithm (in its many
versions) in a variety of network examples. The large body of
additional results provided in [11] provides further evidence of

constraint on blocking probability (1 = -+ = Q). Inour
discussion of particular network examples, the shorthand no-
tation “I; = 6” meansT; = 6,i = 1,2,--- , N (i.e, there
are six transceivers at each node). Similarly, “X; = 4” means
X; =4, =12,---,J (i.e, a most four calls are permit-
ted on any circuit a any time), and “(); = 0.001” means that
Q; = 0.001,5 = 1,2,---,J. The subscript i normally refers
to node number, and the subscript j normally refers to circuit
number.

Furthermore, there are no restrictions on the offered loads;
thus, A,.:n = 0 (which means that the offered load values are
not prevented from decreasing to zero). Finally, the sameruleis
used to pick theinitial stepsize value 6, in al of the core runs,
namely that 6, is chosen so that the first inadmissible solution
is obtained at the fifth iteration for the case in which the projec-
tion is not used (see Section 111-C); the value of 8, is the same
for al 18 versions of the algorithm for each network example
(i.e., for a specified network topology, set of circuits, number of
transceivers, admission-control policy, and QoS value), but dif-
ferent for different network examples. The versions have been
evaluated based on their ability to find the optimal solution, as
well as on their speed.

Our primary conclusion, based on extensive numerical evalu-
ation, isthat virtually all versions of the algorithm performwell,
based on the criterion of providing optimal (or nearly optimal)
throughput within 1000 iterations. The evolution of the offered
load vector may vary greatly among the set of algorithms, but
thefinal throughput valueis typically close to the optimal value
for al versions.

A. Blocking Probability

One characteristic property of the optimal solution in con-
strained optimization problems such as ours is that at least one
of the circuit blocking probabilities must be at the maximum
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permissible value of QoS. To measure how close the individual
circuits approach this value, we introduce the normalized circuit
blocking probabilities

Bj=Fi/Qj, j=1,-,J. (17)
ThUSPJ’ = 1WhenPJ = Qj.

Table 1, which we refer to as an “offered load” table, sum-
marizes the solutions obtained for Networks 1, 2, and 3 with
T; =6,X; =4,and Q; = 0.001 and 0.3. For each of these six
cases, we provide the solution that provided the best (i.e., high-
est admissible throughput) performance among the 18 versions
of the algorithm. The entries shown are the offered load values
(A;"s), the corresponding normalized circuit blocking probabil-
ities (Pj’s) and the throughput (.S at the best point obtained for
each run. The ten columns, with double entries in each cell,
show the offered loads and normalized circuit blocking proba-
bilities. For example, consider the top row, which shows the
solution obtained for Network 1 with @ ; = 0.001. The cell in
the {A1, P} column, with entries 0.2512 and 1.0000, indicates
that A\; = 0.2512 and P, = 1.0000 at the best result for that
run. The column at the far right shows the throughput achieved
for that run, which is the same as the benchmark throughput in
Table 6 in the APPENDI X.

With the exception of Network 1 with Q) ; = 0.3, thereislittle
differencein the offered loads found by the different versions of
the algorithm (full details are provided in [11]). The fact that all
of the circuit blocking probabilities are close to the maximum
permitted value suggests strongly (although does not prove) that
our solution is, indeed, close to the true optimal point. Further-
more, the fact that the solutions produced by the 18 versions
of the algorithm are very similar to each other, despite the fact
that the 18 versions produced very different trgjectories, offers
further support for this conclusion.

For Q; = 0.3 thereisaconsiderably wider variationin the so-
lutions produced by different versions of the algorithm, both in
terms of the offered loads (and the resulting normalized block-
ing probabilities) and in the throughput. Typically, the normal-
ized blocking probability is 0.999 or greater on at most five of
the ten circuits (although not always on the same set of five cir-
cuits); on the other circuitsit is significantly lower than the max-
imum permitted QoS value (as low as 0.7542). This behavior is
in marked contrast to that for @ ; = 0.001, in which all circuits
were close to the maximum permitted QoS value.

The fact that not all blocking probabilities are near the speci-
fied QoSlevel when ) ; = 0.3 isnot surprising. Itisnot afailure
of the algorithm, but rather reflects the fact that the level of in-
teraction among the circuits increases as offered load increases.
Thus, there does not exist a set of offered load values for which
all blocking probabilities are at the maximum permitted QoS
value when that valueisrelatively high (e.g., 0.3). Thus, we see
that in examples where there does not exist a solution for which
the QoSvalueisreached on al circuits, the best solution may in-
clude some relatively extreme (i.e., small) values of normalized
circuit blocking probability.

The optimal solutions for Networks 2 and 3 are quite differ-
ent from that of Network 1 in the sense that all of the blocking
probabilities are, in fact, extremely close to the QoS constraint
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value, evenwhen Q) ; = 0.3. Inall casesfor these two networks,
the solutions produced by all versions of the algorithm (i.e., the
offered load values) were virtually identical.

On the basis of these observations, it appears that whenever
the optimal solution does, in fact, lie very close to the QoS
contour in al dimensions, there is very little difference in the
quality of the solutions produced by the various versions of the
algorithm. Also, it appears that our algorithm is more robust
in such cases; typically, fewer iterations are needed, and more-
aggressive stepsize rules (resulting in faster attainment of mile-
stones) are usually successful. Furthermore, we believe that one
can have more confidence in the quality of the solution if the
blocking probabilitiesare all close to the QoS constraint value.

B. Discussion

Based on the core runs, we are able to make a number of ob-
servations on both the sensitivity of the throughput to offered
load and on the performance of the various versions of the algo-
rithm that are designed to find that load.

We have observed that throughput, when the blocking proba-
bility on each circuit is constrained to the QoS value, isarela
tively flat function of the offered | oad in the region of the optimal
solution. Thus, rather large deviations in several of the A ; val-
ues may be observed as the throughput increases from the 95%
to the 98% and higher milestone values.

One of our principal conclusionsis that all versions perform
well in the sense of providing nearly optimal throughput. How-
ever, there are some differences in performance, both in terms
of the speed of achieving “good” (although not necessarily op-
timal) solutions and in terms of reaching the optimal point. Al-
though [11] discusses some examplesin which some versions of
the algorithm provided somewhat less than 98% of the bench-
mark throughput values, our basic conclusion remains valid,
namely that all versions perform well when performedfor alim-
ited number of iterations (1000 in most of our examples).

V. THROUGHPUT GAIN ACHIEVED BY
OPTIMIZATION OF OFFERED LOADS

From the perspective of the network user/manager, it is more
important to determine the improvement obtained by means of
the optimization of the offered loads than to evaluate the rela-
tively subtle differences in performance among the algorithms.
Thus, we compare the performance obtained by using our algo-
rithms to that which is obtained under “uniform loading” (i.e.,
the case in which the A;’s are al equal). In the latter case,
the search for the optimal solution is a simple one-dimensional
search, which constitutes a standard “ quick-and-dirty” approach
to network sizing.

A. Baseline Examples

To assess the benefits achievabl e through optimal 1oading, we
first consider Networks 1, 2, and 3, again for the case of T'; = 6,
and X ; = 4. Fig. 5 showsthroughputin Network 1 asafunction
of QoS (i.e., of the maximum permitted blocking probability on
any individual circuit) for both uniform and optimal loading.
The “optimal loading” curve represents the higher throughput
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Table 2. Throughput improvement achieved by optimization of offered load in network examples with different values of the QoS constraint Q;

(T; =6,and X; =4);case 1: Q1 =--- = Q5 =0.001,Q6 =--- = Q10 =0.3; case2: Q1 =---=Q5=0.3,Qp =---= Q10 = 0.001;
casela: Q1 =---=Q4=0.001,Q5 =---=Qg =0.3; case2a: Q1 =---=Q4=0.3,Q5 =---= Qg = 0.001.
Network 1 Network 2 Network 3
Network example | casel [ case2 [ casel [ cae2 | casela| case2a
Throughput 2.34 234 2.63 2.63 217 217
(al \;’sequal)
Throughput 2.45 2.36 2.70 2.78 217 2.25
(2 equal groups)
Throughput 5.22 5.68 5.59 7.63 2.35 5.61
(optimal load)
Improvement 123% | 142% | 112% | 190% 8% 158%
20 Table 3. Throughput improvement achieved by optimization of offered
load in example with non-uniform number of transceivers; Network 1
(T; =3,i=1,2,---,12,and T; = 6,3 = 13,14,--- ,24, and X; = 6).
. 15 Q. o000 03 [ 09 ]
8_ Throughput
< (al X\;'sequal) 0.37 3.82 7.88
(@)]
=10+ Throughput 051 492 | 852
o (optimal load)
|E Improvement 37.8% | 28.8% | 8.1%
5
throughput
0 | \
0.001 0.01 0.1 1 B. Networks1, 2, and 3 with Different QoS Values
QoS

Fig. 5. Throughput achievable in Network 1 using uniform (lower curve)
and optimal loading (upper curve).

obtained by our optimization algorithm, and demonstrates the
degree of improvement that has been achieved by means of our
multidimensional search. The percentage improvement is great-
est at about ; = 0.1, whereitis 19.6%. In[11] it is shown that
similar improvement is achieved for Network 2. However, little
improvement is obtained for Network 3, apparently because the
offered loads at the optimal point are more nearly symmetrical
than they were for the other two network examples.

In view of the highly asymmetrical nature of the optimal of-
fered load (particularly for the case of Network 1), it is perhaps
surprising that only “modest” increase in throughput was ob-
tained by means of the optimization process. The inability to
produce more substantial gains can be explained, at least in part,
by the highly coupled nature of the circuits in the network. We
can view this as aform of “balanced coupling,” in which arel-
atively large region of the offered load space produces similar
values of throughput.

The characteristics of these networks that cause the insensi-
tivity to loading appear to include the following:

e interaction (i.e., contention for resources) among many
circuits.
equal QoS requirementsfor each circuit.
equal number of transceivers at each node.

We now explore some network examples that do not possess
al of these characteristics, and demonstrate the capability of
our optimization techniques to provide significant increase in

We assume that the blocking probability of half of the circuits
must satisfy a QoS constraint of 0.001 and half must satisfy 0.3.
Inall cases, T; = 6 and X; = 4. Two exampleswere considered
for each case, as summarized in Table 2. Theseresults are based
on the use of the basic search technique; we have found that
the use of the projection operation is not helpful in examplesin
which thereis great disparity among the QoS constraint values.

Thefirst row shows the maximum throughput that can be ob-
tained when &l of the A ;'s are constrained to be equal. We also
considered an alternative form of loading in which al of thecir-
cuitsin the QoS = 0.001 group are constrained to have the same
offered load value (call it Ag.go1), and all those in the QoS =
0.3 group are constrained to have the same offered load value
(call it Ap.3). The throughput associated with the best values of
Ao.001 and Ag 3 areshowninthe second row. Littleimprovement
over the case of uniform offered load is observed. Apparently,
thisis because even small increases of the offered load on some
circuits in the QoS = 0.3 group (above the optimum uniform
value) result in the violation of the QoS constraint on one or
more circuits in the QoS = 0.001 group. The third row shows
the throughput achieved using our optimization algorithm. The
fourth row shows the improvement when the throughput under
optimal loading is compared to that under uniform loading. The
degree of improvement ranges from modest to dramatic, and de-
pends strongly on network characteristics and on which circuits
arein the two QoS groups.

C. Unequal Number of Transceivers

We examined the degree of improvement that can be achieved
in networks in which the number of transceivers is not the
same at all nodes. In particular, we considered Network 1 with
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Table 4. Optimal throughput values for Network 1 with T; = 6.

Qj =0.001 Qj =03
X; =3 1.8391 11.2686
X,=4| 26645 115380
X; =6 2.9095 11.6147

T, =3,i=1,2---,12,andT; = 6,i = 13,14,--- ,24. We
considered a system without admission control, i.e., one with
X; = 6. Table 3 shows the throughput achieved using uniform
and optimal loading for this example, for () ; = 0.001, 0.3, and
0.9. A significant degree of improvement is achieved, except for
very high values of () ;.

VI. THE EFFECT OF THE ADMISSION-CONTROL
THRESHOLDS ON THE OPTIMIZATION OF
OFFERED LOAD

We pointed out in Section | that network performance de-
pends strongly on the highly interdependent issues of admission
control, routing, offered load, and channel access. In this paper,
we have focused on the optimization of offered load under fixed
threshold-based admission control and fixed routing schemes.
In this section we address the impact of adjusting the admission
control thresholds on achievable throughput, as well as on the
performance of our optimization algorithms.

We first address the impact of the imposition of threshold-
based admission control (i.e., setting X; < 1;) on achievable
throughput. Table 4 shows the optimal throughput values for
the case of Network 1 and T; = 6 for X; = 3,4, and 6. When
Q; = 0.3, thereislittle difference in optimal throughput as X ;
isvaried from 3to 6 (an increase of only 2.4% as it isincreased
from 3 to 4, and only 0.66% as it is increased from 4 to 6).
However, the increase is much more substantial when @; =
0.001 (wherethe increases are 44.9% and 9.2%, respectively).

The case of X; = T; corresponds to an “uncontrolled” net-
work, in the sense that calls are admitted as long as a resources
are available at every node along the route. This form of ad-
mission control is often referred to as “ complete sharing.” Such
complete sharing provides increased opportunities to increase
admissible throughput, since the region of admissible load vec-
tors (\) increases in size as the control threshold values X ; in-
crease. A consequence of complete sharing is that the optimal
offered load profile tendsto be more asymmetrical asthethresh-
olds X; areincreased.

VIl. UNDERLOADED CIRCUITS AND FAIRNESS
CONSIDERATIONS

In this section we observe that the presence of “underloaded
circuits’ (defined below) can reduce overall throughput even
though they offer negligibleload to the network. In addition, we
addresstheissue of fairness, which can beimplemented by guar-
anteeing each circuit at least a specified level of offered load.

In severa of our examples, the optimal offered load vector
contains one or more entries that are either zero or close to it.
We refer to circuits whose offered load at the optimal point is
less than 1% of the average offered load as “underloaded cir-
cuits” For example, consider Network 1 with T; = 6, X; = 4,
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Amin = 0, and ¢; = 0.3. The optimal throughput value for
this network is 11.538. It is interesting to note that this value
was achieved when three of the offered load values (A 4, Ag, and
\g) were lessthan 102, while the average value of offered load
on the other seven circuits was 2.3. To assess the impact of
these underloaded circuits on overall network performance, the
algorithm was re-run by setting Ay = A¢ = As = 0, and ig-
noring the requirement that these underloaded circuits satisfy
the QoS constraint.® The resulting optimal throughput valuein-
creased to 11.83. Thus, amodest (2.5%) increase in throughput
was achieved by ignoring the requirement to satisfy the QoS
constraint on circuits that make a negligible impact on the to-
tal network throughput. One way to view this situation is to
say that the non-underl oaded circuits are being penalized by the
need to satisfy the QoS constraint on underloaded circuits. They
are forced to reduce their offered load to accommodate the QoS
requirements of unlikely events (the occurrence of arrivals on
underloaded circuits).

Theissue of whether the QoS constraint should be guaranteed
for al circuits, or for only those with significant offered loads,
is a topic for future study. There are implications on pricing,
e.g., whether the underloaded circuits should be required to pay
more than non-underloaded circuits to receive QoS guarantees.
Here, the requirement that the QoS constraint be satisfied by
the underloaded circuits has a greater deleterious impact on the
other circuits in the network than does the blocking caused by
traffic on the underloaded circuits (which is negligible). Thus,
trade-offs must be made between the often-conflicting goals of
maximizing overall revenue and providing uniform QoS to all
users.

A. Fairness Considerations: A Guaranteed Offered Load on
Each Circuit

Another way to address the issue of underloaded circuits is
to prevent their occurrence by guaranteeing a non-negligible of -
feredload, A, todl circuits. Thegoal hereisto providesome
degreeof fairnesstoal users. Of course, to maintain satisfaction
of the QoS constraint, some of the offered load values will have
to be decreased, resulting in decreased overall throughput. We
again consider the same network example of Network 1 with
T; =6, X; =4,and Q; = 0.001 and 0.3 (and return to our
original requirement that the QoS constraint must be satisfied
on al circuits, including the underloaded ones). Fig. 6 shows
that the optimal admissible throughput decreaseswhen A ,,,;,, in-
creases, asis certainly expected.

For example, consider first the case of () ; = 0.001. Begin-
ning at about \,,,;,, = 0.1, Network 1 at first experiencesagrad-
ual perceptible decrease in admissible throughput as A .4, iSin-
creased. However, at \,,,;, = 0.23 the decrease in throughput
becomes precipitous, and the largest value of A,,,;,, for which an
admissible solution can be found is about 0.234; the curves stop
at thispoint. Thisvalueof \,,,;, isequal to the value obtained by
assuming that all of the A; are equal, and solving for the largest
value of A; that provides an admissible solution. The relative

%The blocking probability of a circuit can be high (relative to the specified
QoS congtraint value) even when the offered load to it is zero. The blocking
probability for circuit j isthe probability that the network isin astate in which a
call to circuit j would be blocked, should it arrive.



240 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL .4, NO.3, SEPTEMBER 2002

3.2
- Network 2
3 2.8
=
S i
e Network 1
IE 2.4
—\
) Network 3
| |
0 0.1 0.2 0.3
kmin
a) @, =0.001

14
H Network 2
212
Ny
(@]
3 \
= Network 1
S 10
Network 3
8 | | |
0 0.4 0.8 1.2 1.6
xmin
b)Q; =0.3

Fig. 6. Maximum throughput achievable on Networks 1, 2, and 3 when each circuit is guaranteed an offered load of at least A,ir, .

insensitivity of Networks 2 and 3 to \,,,;,, is a consequence of
the more nearly symmetrical nature of these networks, asis evi-
denced by themore nearly equal valuesof the A ;'s at the optimal
point.

Results are qualitatively similar when @@; = 0.3, athough
the effects of \,,;, arefelt at values of \,,;,, that are asmaller
fraction of the maximum value it can take on. Whether or not
the decrease in overall throughput, for the sake of providing
each of the users a guaranteed level of offered load, is an ac-
ceptable tradeoff is, of course, the decision of the network de-
signer/manager.

VIIl. AN ALTERNATIVE QOS CONSTRAINT:
AVERAGE BLOCKING PROBABILITY

Instead of requiring that each circuit satisfy the QoS con-
straint on blocking probability, we may consider an alternative
version of the QoS constraint in which we require only that the
average blocking probability in the network must satisfy this
constraint. Whether the QoS constraint should be applied to
the average blocking probability or to each individual circuit is
a decision to be made by the network designer/administrator.
We demonstrate in this section that relaxing the QoS constraint
in this manner results in not only higher throughput values, but
also in considerably faster convergence. To distinguish these
two forms of the QoS constraint, we henceforth refer to them as
P,, and P,,,, constraints, respectively. In addition, we demon-
strate that in some cases the use of a QoS constraint based on
the average blocking probability can provide agood initial point
for a search based on the satisfaction of the QoS constraint on
each individual circuit.

A. Mathematical Model

The overall blocking probability P, (i.e., thefraction of calls
arriving to the network that are blocked, regardless of the circuit
to which they arrive) is defined as the ratio of the expected num-
ber of blocked calls per unit time (summed over al circuits) to
the expected total number of call arrivals per unit time:

J
Pav:lz)‘jpja (18)

where A = A1 + ...+ As. Thus, some circuits may be permitted
relatively large blocking probabilities provided that the overall
blocking probability satisfies the single QoS constraint, i.e., that
P(lU S Q

Following the approach of Section |l, the augmented La
grangian function can now be written as

L()\, 7) = S()‘) - ”ymaX(O, Py — Q) - g[maX(O, Pyy— Q)]Z

(19)
Note that this expression has the same form as (8), except that
there is a single constraint on P,, rather than individual con-
straints on each of the J blocking probabilities P;. The resulting

partial derivativesare

8L (95 +dPav_Q aPav
O\, = O\, - [7 (\/Q )] O\ 1(Pav > Q): (20)
where
J P J
op (>\1+...+>\J)[Pi+ ZlAja—)\Z]—ElAJP]
av J= J=
o M+ .+ Ag)? - (@D

The iterative agorithm proceeds similarly to the case in which
the QoS constraint must be satisfied on each individual circuit.

In[11] we studied the use of the projection to guide the search
in examples involving the P,, form of the QoS constraint. In
this case, since only the average blocking probability P, is of
interest (and not the individual values of the P;’s), P,, is used
instead of Py, in the definition of D. The use of the projection
made little difference in performance, in terms of either quality
of solution or speed of convergence, for the P,, QoS criterion.
The examples discussed here do not use the projection.
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Table 5. Offered loads and normalized circuit blocking probabilities for Network 1 under both P,, and P4, forms of the QoS constraint on average
blocking probability; T; = 6, X; = 4.

QOS form of A1 A2 A3 A4 As A6 A7 Ag Ag A10 S
constr ﬁl ﬁg ﬁg P4 P5 Ps P'r ﬁg ﬁg P1 0

0.001 | Average | 0.2557 | 0.3248 | 0.3126 | 0.2255 | 0.3530 | 0.1360 | 0.4087 | 0.0289 | 0.3385 | 0.2863 | 2.6674
0.9530 | 0.9990 | 0.9850 | 0.9410 | 1.0260 | 0.9280 | 1.0990 | 0.9260 | 1.0070 | 0.9670

Max 0.2512 | 0.3230 | 0.3075 | 0.2321 | 0.3395 | 0.1603 | 0.3941 | 0.0229 | 0.3379 | 0.2987 | 2.6646
1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.9910 | 1.0000 | 0.9270 | 1.0000 | 1.0000

0.3 Average | 2.7669 | 2.8347 | 2.0771 | 0.5338 | 25085 | 0.0000 | 3.2890 | 0.0000 | 2.0771 | 0.8449 | 11.8524
1.0131 | 0.9921 | 1.0014 | 0.9823 | 0.9669 | 1.1590 | 1.0353 | 1.1484 | 1.0014 | 0.9486

Average | 3.3160 | 3.5230 | 1.9599 | 0.0009 | 2.0194 | 0.0008 | 3.3179 | 0.0005 | 1.9675 | 0.0036 | 11.5380
0.9997 | 0.9999 | 0.8975 | 0.8862 | 0.7656 | 0.9999 | 1.0000 | 1.0000 | 0.9011 | 0.7542

column 2: form of constraint indicates whether the F,,, or P, case applies to the following columns
columns 3-12: \; shows offered load to circuit j at best solution P; shows normalized circuit blocking probability at best solution

B. Performance Results

We tested this formulation on Networks 1, 2, and 3, and ob-
tained rapid convergenceto optimal solutions when the stepsize
was reduced exponentially to 10 percent of its initial value in
400 iterations. Such an aggressive stepsize rule did generally
not perform well in the P,,,,. case; it typically resulted in fail-
ure to reach the neighborhood of the optimal solution. In all
of our examples the milestones are reached much more rapidly
than they wereinthe P,,,,, case, and the evolution of the offered
loads is much smoother than in the P,,,,, case. Both of these
characteristics are a consequence of the need to satisfy only a
single average QoS constraint, which permits the set of offered
loads to trade off among themselves more easily than the case
in which the QoS constraint must be satisfied on each individual
circuit. Convergence properties of the P,, model are discussed
briefly in the APPENDI X, and in more detail in [11].

We now compare the results obtained fromthe P, and Py,
models to see the impact of the form of the QoS constraint on
throughput. Table 5 shows the optimal offered loads, the cor-
responding normalized blocking probabilities, and the through-
put for the case of Network 1 with T; = 6 and X; = 4, for
@ = 0.001 and 0.3. Theresultsfor the P,,,, case are based on
the best run among the 18 versions of the algorithm (i.e., the one
that provided the highest throughput).

For the case of ) = 0.001, the relaxation of the QoS con-
straint to the P,,, form has had a negligible impact on the opti-
mal offered load vector and the overall throughput. By contrast,
for the case of ) = 0.3, the use of the average QoS constraint
results in significant changesin some of the offered load values,
aswell asa2.7% increase in throughput. For Networks 2 and 3
there was little difference between the P,, and P,,,,, solutions
for either QoS value[11].

C. Combined Use of Average and Individual QoS Constraints

The results of Table 5 indicate that the use of the average
blocking probability P,, as the QoS constraint typicaly pro-
vides a solution that is “similar” to that obtained using the indi-
vidual circuit blocking probability constraint P,,,,.., especially
for small QoS values (i.e., 0.001). Thus, it brings us close to
the optimal solution of our original problem. This similarity
has led us to consider the use of an alternative approach during
the first phase of the algorithm; instead of using the projection
in conjunction with QoS constraints on each individual circuit,

we have considered using the P,, form of the QoS constraint
(without use of the projection operation). We use the P,,, con-
straint for 100 iterations, in conjunction with an aggressive step-
sizerulein which the stepsizeis reduced linearly to 5 percent of
its initial value during this interval. Then, at the beginning of
the second phase the QoS constraint is applied to each individ-
ual circuit asin the original formulation. Thus, the formulation
based on the average blocking probability is used to determine
aninitial condition for the problem in which the QoS constraint
must be satisfied on every circuit.

For the case of (); = 0.3, the aggressive stepsize rule that
worked well for ) ; = 0.001 produced only 98% of the optimal
throughput value. 1t was possible to reach the 99.5% milestone
only when more-conservative stepsize rules were used; hence
many more iterations were needed to reach comparable perfor-
mance, and little difference was observed in the speed of the
algorithm as compared to the basic search technique. The com-
bined P,,/P,, .. agorithm was also used for Networks 2 and 3
for both values of the QoS constraint parameter. In these cases,
the 99.5% milestones were reached very rapidly (by approxi-
mately iteration 150) when the stepsize rule discussed here was
used.

For five of the six examples discussed here (i.e., two QoS val-
ues for each of the three networks), the performance obtained
by using the combined P, /P, approachiscomparableto, or
better than (in terms of speed), that of the better algorithmsthat
are based on the use of the projection in one or more phases.
It appears that this approach would be most effective when the
solution based on the P,,, QoS criterion is most similar to that
based on the P,,,, QoS criterion. Of course, it is not possible
to determine with certainty that the solutions are similar without
solving both problems. However, an examination of the circuit
blocking probabilities shown in Table 5 may provide a helpful
clue. In cases where the maximum normalized blocking prob-
ability found under the P,, constraint is only dlightly greater
than 1.0, little has to be done to coax the offered load valuesto a
point that maximizes throughput while satisfying the P, ... QoS
criterion.

IX. CONCLUSIONS

In this paper, we have used a heuristic mix of sophisticated
mathematical methods and intuition to develop a tool for the
off-line determination of the offered load vector A that provides
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the maximum value of throughput, subject to QoS constraints
on blocking probability, for a specified routing and admission-
control policy. We have considered circuit-switched CBR ser-
vice in both wireless and non-wireless networks, with the usua
Markovian assumptions on the traffic characteristics. An easily
implemented stopping rule provides convergence to nearly op-
timal solutions. Our approach provides a basis for “sizing” the
network capability, i.e., for determining a benchmark level of
“network capacity.” If the original, user-specified, offered load
profile does not achieve alevel of throughput that is sufficiently
close to this benchmark capacity, then pricing mechanisms can
be introduced to steer the offered load profile in a direction that
maximizesoverall revenue. We have demonstrated that optimiz-
ing throughput over al circuit input rates often yields a signifi-
cant improvement in achievable throughput, as compared to ad
hoc techniques (such as uniform loading).

We have investigated two forms of the QoS constraint. In the
first, the QoS constraint must be satisfied on each circuit; in the
second, it is sufficient that the average blocking probability sat-
isfy this constraint. We have found that, in the former case, it
is often helpful to use the “ projection” version of our algorithm,
which provides faster and more reliable convergence to nearly
optimal solutions, with little need to manually adjust parame-
ters. Nevertheless, a high level of robustness was displayed by
all versions of the agorithm (including those that do not use
the projection heuristic) in that they all provided at least 98%
of the optimal throughput in ailmost all examples. Relaxing the
QoS constraint to its average form results in somewhat higher
throughput (depending on the particular example), as well as
faster and more reliable convergence (whether or not the projec-
tion heuristic is used).

The decision on which form of the QoS constraint is appro-
priate can be made by the network manager, based on the prefer-
ence for individual vs social optimization. Economic issues can
be incorporated by introducing a pricing structure that charges
more for services that are provided to circuits that block an in-
ordinate number of other circuits; alternatively, one can charge
less for services for which less-stringent QoS levels are guaran-
teed. However, we leave a detailed consideration of thisissue to
future work.

It is interesting to note that, particularly for large values of
QoS, the throughput is arather flat function of the offered load
in the sense that large changes in the offered load on several cir-
cuitsyield only asmall change in throughput. Therefore, when
the convergence criterion is satisfied the throughput is close to
its optimal value, even though the individual offered loads may
be far from their optimal values. Consequently, it is often pos-
sible to incorporate fairness mechanisms that guarantee a spec-
ified level of throughput to each circuit, without significantly
decreasing the overall throughput.

An obvious limitation of our algorithm (common to al solu-
tions that focus on a single aspect of network control) isthat, in
itscurrent form, it must beimplemented for each routing scheme
and for each admission-control policy. Futureresearchis needed
to develop atool that jointly addresses the issues of offered |oad
profile, routing, and admission control.
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Fig. 7. Normalized stepsize as a function of iteration number - Stepsize
Rule #3.

APPENDIX: CONVERGENCE PROPERTIES OF THE
ALGORITHM

The focus of this paper has been on the “network capacity”
and the offered load that achievesit, aswell as on the properties
of the solution. In this appendix we discuss some of the details
of the various versions of the algorithm, as well as their conver-
gence properties. Our primary focus is on the P,,,, case, for
which 18 versions were studied. We also discuss briefly the P,
case.

The P, .. Case

Table 6 provides a summary of the important “milestones’ of
each run for Network 1 with T; = 6, X; = 4, and Q; = 0.001.
We have included results for five versions of our agorithm,
which make use of Stepsize Rule #3, which is shown in Fig. 7.
The three “phases’ are the three regions of constant slope (on
the logarithmic scale). Additional stepsize rules, and the corre-
sponding performanceresults, are discussed in [11].

The different versions of the algorithm make use of the fol-
lowing projection rules:

B = 0: no projection used at any time during the search;

B = 1: the projection based on only the “dominant” circuit
(i.e., the circuit with the largest blocking probability) is used
throughout the entire search;

B = 2: the projection with » = 0.2 is used during phase 1; no
projection is used during phases 2 and 3;

B = 3: the projection with » = 0.8 is used during phase 1; no
projection is used during phases 2 and 3;

B = 4: the projection with » = 0.2 is used during phase 1, v =
0.8 is used during phase 2, and no projection is used during
phase 3.

In our evaluations, the initial values of the offered loads are
zero for al circuits. The “benchmark throughput” value (listed
in the figure caption) is the highest value of admissible through-
put that was obtained for any of the 18 versions of the algorithm.
Results for this network example but with @) ; = 0.3, as well as
numerous other examples, are provided in[11]. We explain now
the labels of the nine columnsin Table 6.

1) algo: the version of the algorithm, denoted asA.B (e.g.,
3.2, etc.), where A represents alternative “ stepsize rules’
and B represents alternative " projection rules’;
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Table 6. Milestone table for Network 1 with T; = 6, X; = 4, and Q; = 0.001; Stepsize Rule #3 (benchmark throughput: 2.6646).

algo | admthruput | bestadm | lastadm | 95.0% | 98.0% | 99.0% | 99.5% | 99.9%
at first exit thruput thruput

3.0 8 975 991 62 177 382 382 472
78.22% 99.99% | 99.98%

31 14 899 998 28 235 372 400 456
92.89% 100.00% | 99.99%

32 29 981 1000 36 91 380 405 a77
94.11% 99.99% | 99.98%

33 18 990 999 41 292 332 408 476
94.66% 99.99% | 99.99%

34 29 914 995 36 91 341 354 517
94.11% 100.00% | 99.98%

first column: version of algorithm in A.B notation
upper entries (columns 2-9): iteration at which milestone is reached
lower entries (columns 2—4): percentage of benchmark throughput at this iteration

2) adm thruput at first exit; the upper entry indicates the
last iteration before the trajectory leaves the admissible
region for the first time; the lower entry shows the per-
centage of the benchmark throughput value achieved at
thisiteration;

3) best adm thruput: the iteration at which the highest ad-
missible throughput isfound, and the percentage of bench-
mark throughput achieved at thisiteration;

4) last adm thruput: the last iteration for which the so-
lution is in the admissible region, and the percentage of
benchmark throughput achieved at this iteration;

5) 95.0%: thefirst iteration at which the solution is admis-
sible and equal to at least 95% of the benchmark through-
put value;

6) - 9) 98.0%, etc.: firstiteration at which the correspond-
ing milestone is achieved.

We first consider (); = 0.001, as shown in Table 6. Virtu-
ally identical throughput values were obtained for al 18 ver-
sions of the algorithm, including the five summarized in this
table as well as the additional versions discussed in [11]; in all
18 cases, the throughput was at least 99.9% of the benchmark
value. For @; = 0.3 &l 18 versions provided at least 99% of
the benchmark throughput value, 15 versions provided at |east
99.5%, and 13 versions provided at least 99.9%.

Such convergence to nearly optimal solutions is typical be-
havior over a wide variety of network scenarios, as is evident
from the milestone tables for the nine other core runs, which are
provided in [11]. In fact, for nine of the eleven network exam-
plesin the core runs, al 18 versions of the algorithm were able
to provide at least 99.9% of the optimal throughput value; for
ten of the eleven network examples all 18 versions were able to
provide at least 99.5% of the optimal throughput value; and in
all eleven network examples, al 18 versions were able to pro-
vide at least 99% of the optimal throughput value.

The purpose of the “adm thruput at first exit” column is to
indicate the percentage of the benchmark throughput that is
achieved prior to exiting the admissible region for the first time.
This can be viewed as a measure of how well the algorithm be-
haves in the early stages in the sense of the directness of the
approach to the optimal solution. Generally, the versions of the
algorithmthat do not usethe projection (i.e., A.0) exit theadmis-
sible region sooner than the versions that do use the projection

when the same stepsize is used. One reason for this behavior
isthat, since|| D ||<|| VS ||, the offered loads (and hence the
resulting throughput) typically change by a smaller amount at
each iteration than for examples in which the projection is not
used. Another (related) reason is that, when the projection is not
used, the trgjectory is not affected by the QoS constraint until
the admissible region is exited for thefirst time.

Moreover, in most cases the percentage of the benchmark
throughput that is achieved just prior to exiting the admissible
region for the first time is generally considerably higher for the
versions that use the projection with a large number of circuits.
For example, when ); = 0.3, the A.2 and A .4 versions of the
algorithm provide about 96% of the benchmark throughput prior
to exiting the admissible region for the first time. By contrast,
the A.1 and A.3 versions provide only about 85% to 88% of
the benchmark throughput. It thus appears that the versions of
the algorithm that use a large number of circuits in the projec-
tion provide amore-direct ascent to an early “good” solution (in
which the offered loads still may be far from the optimal solu-
tion). The results for Q; = 0.001 shown in Table 6 are not as
conclusive, althoughiit is clear that the A.O versions provide the
lowest percentage of benchmark throughput prior to thefirst exit
of the admissible region.

Our primary conclusion is that virtually all versions of the
algorithm perform well, based on the criterion of providing op-
timal (or nearly optimal) throughput within 1000 iterations. The
evolution of the offered load vector may vary grestly among the
set of algorithms, but thefinal throughput valueistypically close
to the optimal value for all versions.

The Stopping-rule

As observed in Section |, the objective addressed in this
paper is the determination of the load profile that maximizes
throughput, subject to QoS constraints on blocking probabil-
ity. Thus, for a given set of source-destination pairs, a given
routing scheme, and a given admission-control policy, one can
view our algorithm as a“black box” that determinesthe optimal
load profile and the corresponding “ network capacity.” Once the
optimal load profile and throughput have been determined, it
is straightforward to determine whether any user-specified load
profile provides performancethat is sufficiently closeto the opti-
mal. Pricing mechanisms can then be introduced that encourage
the usersto steer their loads toward the neighborhood of the op-
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Table 7. Stopping-Rule table for Network 1 with T; = 6, X; = 4, and Q; = 0.001; Stepsize Rule #3 (benchmark throughput: 2.6646.)

max it 300 600 1000
0 0.1 0.01 0.001 0.1 0.01 0.001 0.01 0.001 | 0.0001
3.0 54 300 300 54 372 571 372 571 997
93.612 | 98.099 | 98.099 | 93.612 | 98.374 | 99.966 | 98.374 | 99.966 | 99.990
31 15 300 300 15 380 498 380 498 908
92,890 | 98.380 | 98.380 | 92.890 | 99.454 | 99.958 | 99.454 | 99.958 | 99.997
32 14 143 300 14 143 524 143 524 913
56.247 | 98.237 | 98.434 | 56.247 | 98.237 | 99.949 | 98.237 | 99.949 | 99.991
33 15 300 300 15 389 510 389 510 1000
79.320 | 98501 | 98,501 | 79.320 | 99.208 | 99.961 | 99.208 | 99.961 | 99.992
34 14 143 300 14 143 407 143 407 441
56.247 | 98.237 | 98.434 | 56.247 | 98.237 | 99.772 | 98.237 | 99.772 | 99.862

max it = maximum number of iterations (= 300, 600, or 1000)
¢ = tolerance level used in stopping rule (= 0.1, 0.01, 0.001, or 0.0001)
upper entries: point at which iteration is stopped (either because convergence criterion is satisfied, or because maximum number of iterations has been reached)

lower entries: percentage of benchmark throughput at stopping point

timal solution. Itisin this sense that we view our algorithmasa
design tool.

The practical use of the algorithm as such a tool requires the
specification of astoppingrule. The milestonetables (e.g., Table
6) are based on running of the different versions of the algorithm
for afixed number of iterations, in this case 1000. However, in
most applications, iterative algorithms such as those devel oped
in this paper would be terminated when a suitable convergence
criterion is satisfied. The use of appropriate stopping rules can
save considerable computational timeif convergenceis obtained
early; on the other hand, failure to converge indicates that ad-
ditional iterations are needed. The effectiveness of algorithms
with particular stopping rules can be evaluated in terms of speed
(number of iterations until convergenceis declared) and quality
of the resulting solution (in our case, percentage of the bench-
mark throughput that is obtained when the algorithm is stopped).

To evaluate the stopping rules, we did not perform additional
runs, but instead examined the data from the runs with duration
equal to 1000 iterations, and determined the outcome that would
have occurred had these stopping rules been used. The conver-
gence criterion used in our studiesis

|Sk+1 — Skl

— <4,
max{Sk, Sk+1}

k=m,m+1,...m+4 for some m,

(22)
i.e., that five consecutive throughput val ues (whether or not they
are admissible) should not differ from the previous throughput
value by more than a specified fraction, which we denote by 4.
Table 7 shows the effect of using different stopping rulesfor the
determination of convergence for the same example for which
the milestone table was just discussed, i.e, for 7; = 6, X, =
4, ; = 0.001, and for Stepsize Rule #3. For example, three
columns are headed by the number 300, and show the effect of
stopping the run when convergenceto the specified tolerance (§
= 0.1, 0.01, or 0.001) has been achieved, or at iteration 300 if
convergenceto the specified tolerance is not achieved.

When the search is stopped (either because the convergence
criterion is satisfied, or because the specified number of itera-
tions has been reached), the solution to the problem is declared
to be the set of offered loadsthat has provided the highest admis-
sible throughput thus far during the course of the run; the best
solution is not necessarily the offered load at the stopping point

because of the nonmonotonic nature of the algorithm. Specifi-
cally, consider the case of Version3.0in Table 7. Theentry of 54
in the column headed by 300 and 0.1 indicates that convergence
to within a tolerance of § = 0.1 is obtained at iteration number
54. The entry of 93.612 under the 54 indicates that use of this
stopping criterion provides 93.612% of the benchmark through-
put (2.6646), i.e., the best admissible throughput observed thus
far (not necessarily at thisiteration—it may have occurred earlier)
is 93.612% of the benchmark throughput. Similarly the entries
in the next column indicate that convergence to within 0.01 is
not obtained during the first 300 iterations, and that the best so-
lution in the first 300 iterations provides 98.099% of the bench-
mark throughput; the criterion of § = 0.01 is satisfied at iteration
372, at which point 98.374% of the benchmark throughput is
obtained. The criterion of § = 0.001 is satisfied at iteration 571.

It is impossible to anticipate the quality of the solution that
will be determined by a particular level of convergence. For
the network example of Table 7, when comparing the five ver-
sions of the algorithm that use Stepsize Rule #3, we see that a
convergence criterion of § = 0.1 (see the column for 600 iter-
ations) provides a solution with throughput that is somewhere
between 56% and 93.6% of the benchmark value. A criterion
of 0 = 0.01 (see the column for 1000 iterations) provides a solu-
tion between 98.2% and 99.5% of the benchmark value. Finally,
a convergence criterion of 6 = 0.001 (see the column for 1000
iterations) provides a solution that is better than 99.86% of the
benchmark valuein al cases. These numbers vary significantly
for the different network examples we have considered, but are
similar for the various stepsize rules we have studied.

Severa factors affect the rate of convergence. For example,
small stepsizes result in small changes in the offered load (and
hence throughput) at each iteration; thusarulethat reduces step-
sizerapidly would result in rapid satisfaction of the convergence
condition, although not necessarily convergence to the optimal
point. Also, we have observed that use of the projection opera-
tion with alarge number of circuits tendsto result in asmoother
trajectory (not only a more-direct path, but also a smaller “ef-
fective stepsize” for agiven ¢ than the use of no projection), and
thus the increased possibility of declaring convergence prema
turely.

The P, Case:

Convergence to the 98% and higher milestones was usually
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much faster for the P,, version of the constraint than for the
P4, Version. For example, the 99.5% milestone was typically
achieved within the first 50 iterations, and the 99.9% milestone
was typically achieved in about 100 to 150 iterations. Fur-
thermore, the trajectories of admissible throughput and of the
offered loads (the A;'s) are considerably smoother in the Py,
case. Although the admissible throughput doesn’t necessarily
increase monatonically, the decreases observed before conver-
genceis achieved are much smaller than those observed for the
P,... case. The faster convergence and smoother trgjectories
are a consequence of the need to satisfy only one constraint on
overall blocking probability, rather than one for each individual
circuit. Further details are provided in [11].
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